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Abstract

A thin strip is bent such that the two ends are brought together and clamped (pinched) to form a
teardrop shape. The clamped end is held at various angles with the loop either upright, horizontal,
downward, or halfway between these positions. The length of the loop is increased, and the resulting
equilibrium shapes, as well as small in-plane vibrations about equilibrium, are investigated analytically and
experimentally. When the loop is held upright, in-plane buckling occurs at a critical length, and subsequent
postbuckling deflections can be large. For the other orientations, except the hanging one, deflections also
become large as the length is increased. In the analysis, the strip is assumed to be an inextensible elastica
which is unstrained when straight, and its self-weight is included. A shooting method is applied to obtain
numerical solutions to the nonlinear equilibrium boundary value problem and the linear vibration
boundary value problem. Polycarbonate strips are used in the experiments, and data are acquired with a
laser vibrometer. The experimental deflections, frequencies, and mode shapes exhibit excellent agreement
with the analytical solutions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The ends of a straight, thin, uniform, flexible strip are bent until they meet, and are clamped
together. The strip then forms a teardrop shape, as shown in Fig. 1, and will be called a
pinched loop. One application of such a pinched loop is in the loop tack test for adhesive
tapes [1,2]. The adhesive is on the outside surface of the loop or on a flat surface. The loop
is brought into contact with the surface and then pulled away. The same shape as the pinched
loop also occurs in some buckling problems, such as: (1) when the ends of a clamped—clamped
beam are moved toward each other until self-contact occurs between the two sides of the
buckled shape [3,4]; (2) when a similar but asymmetric configuration occurs if a heavy fabric on a
table is compressed and wrinkled [5]; and (3) when a bent strip is pushed onto a flat rigid
surface [6]. A thin strip with pinned boundary conditions under axial compression was
investigated in Ref. [7].

Equilibrium shapes and in-plane vibrations of a pinched loop are investigated
analytically and experimentally here. The clamped end is oriented at five different angles
from the horizontal: n/2,7/4,0,—n/4, and —=n/2rad, where 7/2 means that the loop is
upright, 0 means that it is horizontal, and —n/2 means that the loop hangs vertically from
its clamped support. The weight of the loop is included in the analysis, and the length of the loop
i1s varied. Equilibrium configurations and the first four vibration frequencies and modes are
determined.

If the loop is in the upright configuration and its length is increased, the deflections
remain symmetric until in-plane buckling occurs at a critical length, and postbuckling
shapes and frequencies are computed and measured, as well as those under prebuckling
conditions. For the other orientations, deflections increase as the length is increased, with
no buckling occurring. For the downward configuration, deflections remain symmetric as the
length is varied.

In the analysis, formulated in Section 2, the loop is modeled as an inextensible elastica.
Numerical results are obtained with the use of a shooting method. In the experiments, described in
Section 3, the strips are made of polycarbonate and have various thicknesses and lengths. The
analytical and experimental results, presented in Section 4, show excellent correlation. Concluding
remarks are given in Section 5.

Fig. 1. (a) Geometry of pinched loop; (b) photographic image of experimental set-up.
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2. Analytical formulation

The strip is assumed to be an elastica, which is thin, flexible, inextensible, unshearable, and
unstrained when straight. It has length L, constant bending stiffness EI, and constant weight W
per unit length. As shown in Fig. 1(a), points on the loop have coordinates X (S, T) and Y (S, T)
where S is the arc length and 7 is time. The X-axis is parallel to the loop at the clamped end and
has angle f# with the horizontal, and the angle of rotation of the strip from the X-axis at arc length
Sis 0(S, T).

The internal forces in the loop, parallel to the —X and — Y axes on a positive face in the upper
portion, respectively, are P(S, 7)) and Q(S, T'), and the bending moment, which is proportional to
the curvature, is M(S, T). To put the analysis in nondimensional terms without involving the
length L, define

a=(EI/W)3, I=Lja, x=X/a, y=Y/a, s=S/a,
p=Pd’/EI, q=Qd*/EI, m=Ma/EI, t=T\/g/a, o=Q\/a/y, (1)
where Q is a dimensional vibration frequency.

Based on geometry, the moment—curvature relation M = EI060/0S, and dynamic equilibrium,
the governing nondimensional equations are

0x/0s = cos 6, 0y/0s =sin 0,
00/0s =m, 0Om/0s=q cos O —p sin 0,
Op/0s = —sin f— 0°x/dr*, 0q/ds = —cos f — 0%y /dr. Q)
The weight per unit length of the loop does not appear explicitly in these equations and damping
is neglected in the analysis.
The variables are written in the form

X(8, 1) = x0(5) + x4(s)sin wt,  y(s,1) = y,(5) + y,(s) sin wt,

0(s, 1) = 0.(s) + 04(s) sin wt, m(s, 1) = m.(s) + my(s) sin wt,

P8, 1) = p(8) + py(s)sin ot,  4(s, 1) = q,(s) + q4(s) sin w1, 3)
where the subscripts “e¢”” and “d”’ denote equilibrium and dynamic, respectively, and the dynamic
quantities will be assumed to be small.

For equilibrium, the governing equations are
X, =cos 0,, y,=sin0,,
0, =m,, m,=gq,cos0,—p,sin0,,
p,=—sinf, ¢,=—cosp. 4)
Eqgs. (4) lead to the relations

Pe(s) =py—ssin B, q,(s) =qy— s cos B, (5)

where p, and ¢, are constants.
After making use of Egs. (5), Egs. (4) are solved numerically using a shooting method [8] with
the subroutines NDSolve and FindRoot in Mathematica [9]. The length [/ and angle f§ are specified,
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and the known boundary conditions at s=0 are x.(0)=y,0)=0,(0)=0. The quantities
me(0), py, and ¢, are varied until x.(/) = y,(/) = 0 and 0.(/) = —n with sufficient accuracy. For the
cases f = n/2 and —n/2, p, is not an unknown but is equal to 0.5/ and —0.5/, respectively.

If the weight were neglected, then for any orientation, p, would be zero and the bending
moment 2,(0) at the clamped end, the nondimensional length /, and the (constant) internal force
¢, would be related by m.(0) = 6.05526/1 = —0.96163(¢,)"/* [10].

For small in-plane vibrations about equilibrium, Egs. (3) are substituted into Egs. (2) and
nonlinear terms in the dynamic variables are neglected. After utilizing Egs. (4), this leads to the
linear vibration equations

X, =—04sin0,, Y, =04 cos 0.,
0, =mg, m,=(q;—p,04)cos 0, — (p;+ q,0q)sin 0,,
Piz = U)zxd, qzi = wzyd- (6)

A shooting method is used again, with x4(0) = y,(0) = 04(0) = 0. Since the modal amplitude is
arbitrary, m,4(0) is specified, for example, and p,(0), ¢,(0), and w are varied until x;(/) = y,(/) =
04(I) = 0. Initial guesses for the nondimensional frequency o are chosen in different ranges to
compute the first four frequencies and the corresponding modes.

3. Experiments

Polycarbonate strips with various thicknesses and lengths were utilized in the experiments. The
modulus of elasticity E was 2.4 GPa, the specific weight was 11.2kN/m?, the width was 25.4 mm,
and four thicknesses were used, ranging from 0.508 to 1.524 mm. The strips were bent into the
appropriate configuration and clamped between two aluminum plates, which were mounted
perpendicularly on a single plate. The orientation of the clamped end was adjustable. An example
of an upright loop is shown in Fig. 1(b).

In the equilibrium configuration, the horizontal and vertical deflections of the midpoint of the
loop were tracked as the length was increased. For the upright loop (ff = n/2), until the critical
length was reached, vertical deflections were small and the horizontal midpoint deflection was
negligible. Large postbuckling deflections were observed as the length was increased beyond its
critical value. There is no critical length (i.e., bifurcation) for other orientations. For the
orientations f = n/4, f = 0 (i.e., horizontal), and = —n/4, the length was increased a significant
amount and large deflections occurred. For the hanging loop (f = —n/2), vertical deflections were
small and the horizontal midpoint deflection was negligible.

The behavior of small-amplitude vibrations about the equilibrium configuration was then
examined. A point-to-point laser vibrometer (Ometron VH300 + ) measured the vibration in terms
of velocity near the support. Preliminary frequency spectra indicated that the motion was strongly
influenced by the first four frequencies and also confirmed that damping was light, which justified
the exclusion of damping in the analytical formulation. Over the appropriate frequency range,
multiple data sets were taken and averaged for each strip length and orientation. For each set of
measurements, the strip was excited manually in varying directions and locations along the strip.
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Frequencies were tracked as a function of the length of the loop. For the upright loop, data were
acquired under both prebuckling and postbuckling conditions.

For modal analysis, it was necessary to record both the loop response to excitation and the time
series corresponding to the excitation. Employing a modal impact hammer (Endevco 2302-50) and
ME’scope VES (Vibrant Technology, Inc.), the input and output time series were used to obtain a
frequency response function for each measurement. For the specific mode shape study, the
thickness chosen was 0.508 mm and the strip was clamped in the upright position. Measurements
were taken at 30 points along the strip. The laser vibrometer was adjusted to measure at each of
these points in the same direction, except near the midpoint where measurements were taken from
above. The impact hammer struck the loop at the same point and in the same direction for every
measurement. Using the equilibrium shape and the response associated with the first four
frequencies obtained, mode shapes were constructed for each of these frequencies.

4. Results

The cases f = n/2,0, and —n/2 will be designated the upright, horizontal, and hanging loop,
respectively. Unless otherwise noted, the experimental results will be associated with a strip of
cross-sectional dimensions 25.4mm x 0.508 mm, which corresponds to the reference length a in
Egs. (1) being equal to 0.167m, and the nondimensional vibration frequency w being equal to
0.130 times the dimensional frequency. Most of the results will be presented in terms of
nondimensional quantities defined in Eqs. (1), in particular length /, frequency w, and coordinates
x and y of the midpoint (where s = 0.5/).

Equilibrium results are considered first. Fig. 2 shows the horizontal and vertical components of
the midpoint location as a function of length for the horizontal loop. The continuous lines
represent the analytical solution and the circles represent the experimental data. The solid line and

35

Midpoint location

8.0

Fig. 2. Midpoint location of horizontal loop (relative to clamped end) as a function of length. Continuous line,
horizontal (analytical); dashed line, downward (analytical); e, vertical (experimental); o, horizontal (experimental).
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open circles give the horizontal distance from the clamped end to the midpoint. The dashed line
and closed circles denote the downward deflection of the midpoint relative to the height of the
clamped end. The downward deflection increases with increasing length, whereas the horizontal
distance of the midpoint from the clamped end increases and then decreases. Sample digital
images of the experimental equilibrium shapes are shown for / = 2.15,3.28, and 5.36 (denoted by
vertical lines).

Equilibrium results for the upright loop are depicted in Fig. 3. The horizontal deflection of the
midpoint is plotted as a function of the length of the loop. The critical length is / = 4.50 from the
analytical solution, and a supercritical pitchfork bifurcation is observed. Also shown in Fig. 3 is a
photograph of the loop for / = 5.29, when the horizontal midpoint deflection is near its maximum
value. The experimental data points are very close to the analytical curve except just beyond this
point on the equilibrium path.

Vibration results are presented next. A typical experimental frequency spectrum is depicted in
Fig. 4, obtained using the laser vibrometer discussed in the previous section. The upright strip is
0.5096m long (/ = 3.06). The results were averaged over four time series. The four lowest
dimensional frequencies are distinct at 1.81, 10.73, 20.16, and 30.53 Hz. This procedure was
repeated for several thicknesses and a number of lengths. The four lowest measured frequencies
are denoted by circles, squares, and triangles in Fig. 5 over a range of nondimensional lengths.
Values of the nondimensional frequency w should not be affected by the thickness of the strip.
Continuous curves represent the analytical results. The experimental data points lie very close to
the analytical curves.

The mode shapes also were determined for some cases experimentally and analytically. The first
four mode shapes for the upright case with / = 3.48 and a strip thickness of 0.508 mm are depicted
in Fig. 6, along with the equilibrium shape. The corresponding measured dimensional frequencies
are 1.3, 8.26, 15.8, and 23.9 Hz. As expected, the second and fourth modes are symmetric with
respect to the vertical axis. The theoretical and experimental mode shapes are in close agreement.

080§

0 0.5 1 15 2 25
Deflection

Fig. 3. Horizontal midpoint deflection of upright loop as a function of length. Continuous line, analytical; e,
experimental.
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Fig. 4. Typical frequency spectrum for upright loop with / = 3.06; main peaks at 1.81, 10.73, 20.16, 30.53 Hz.

140 \

120F ;k._

Fig. 5. Lowest four natural frequencies of upright loop as a function of length. Symbols are experimental data points,
lines are theory. First mode: e and continuous line; Second mode: o and dashed line; Third mode: black squares and
dot-dashed line; Fourth mode: A and dotted line.

Finally, vibrations were studied for loops with different orientations. Results were obtained for
angles ff = n/2 (upright), /4, 0 (horizontal), —n/4, and —=n/2 (hanging). The lowest (i.e.,
fundamental) frequency is plotted in Fig. 7 as a function of the nondimensional length, except for
the case f = —n/4 since its frequencies are very close to those for f = —n/2. The experimental
data points were obtained as the average values from multiple frequency spectra. They lie very
close to the analytical results given by the curves.
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Mode 1
@ | o) |

Mode 3
© | | @ |

Fig. 6. First four mode shapes for upright loop. (a) Mode 1, (b) mode 2, (c) mode 3, (d) mode 4. Dashed curve,
equilibrium (analytical); continuous curve, mode (analytical); e, equilibrium (experimental); o, mode (experimental).

For the upright loop, as the length of the loop is increased, the fundamental frequency
decreases until it is zero at the critical length / = 4.50. (Extrapolation of measured fundamental
frequencies at smaller lengths to the length at zero frequency could be used to predict the critical
length [11].) As the length is increased further and the loop droops (postbuckling deformation),
the fundamental frequency increases. For the other orientation angles considered, the
fundamental frequency decreases continuously for the range of lengths shown. If angles very
close to f = n/2 were considered and / were increased, the corresponding fundamental frequency
would decrease until / approached 4.50 and then would increase (similarly to the typical behavior
of a slightly imperfect system).

It is noted in Fig. 7 that, for a fixed length of the loop, a reduction in the angle f at the clamped
end implies an increase of the fundamental frequency. This is not surprising, since the axial
internal force in the loop would tend to become less compressive or more tensile. The differences
between the fundamental frequencies for the different orientation angles are small if the length of
the loop is either sufficiently small or sufficiently large (i.e., the fundamental frequency becomes
almost independent of the orientation).
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Fig. 7. Fundamental frequency as function of length. Lines are theoretical, symbols are experimental. Continuous and
x,f = n/2; long dashes and o, § = n/4; dot-dashed and e, f = 0; dotted and A, f = —n/2.

5. Concluding remarks

A pinched loop was considered, with various orientations of its clamped end. Equilibrium
shapes and small in-plane vibrations about those shapes were examined analytically and
experimentally. In the analysis, the weight of the loop was included, but damping was neglected.
The loop was treated as an elastica and solutions were obtained with a shooting method. In the
experiments, polycarbonate strips were used. The orientation was fixed and the length of the loop
was increased.

The behavior depends on the orientation and length of the loop. Buckling is only possible for
the upright loop: in-plane buckling occurs at a critical length, and the loop droops smoothly to
one side as the length is increased further. If the loop hangs vertically downward, the equilibrium
configuration remains symmetric and an increase of length causes the shape to become slightly
thinner and longer. For any other orientation, the droop increases as the length is increased.

The first vibration mode corresponds to a rocking about the equilibrium configuration,
essentially pivoting about the clamped end. For the upright loop and the hanging loop, if the
modes are numbered according to the order of the frequencies, the even-numbered modes are
symmetric about the vertical axis.

The correlation between the analytical and experimental results was very good, both for
equilibrium shapes and the first four vibration frequencies and modes. In a related problem, an
upright half-loop was considered in Ref. [12], with the clamped ends oriented vertically and
separated by a fixed distance. The cross section was circular, rather than the thin cross section of
the strip considered above. As the length of the half-loop was increased, out-of-plane buckling
occurred at a critical length. The buckling was smooth (supercritical bifurcation) if the material
was linearly elastic, but if the material had a sufficient amount of softening, the half-loop suddenly
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jumped from a planar shape to a severely drooped out-of-plane configuration when the critical
length was reached (subcritical bifurcation).
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